Spin-valley collective modes of the electron liquid in graphene

Zachary M Raines

C42.00002

March Meeting Online, 2021

4:12 PM-4:24 PM

Collaborators

Prof. Vladimir Fal'ko Prof. Leonid Glazman

Univ. Manchester

Yale

How do excitations of the spin-valley channels spread in Fermi Liquid graphene?

Fermi Liquid graphene A multicomponent Fermi liquid

$$\epsilon_{ij}(\mathbf{p},\mathbf{r}) = \boldsymbol{\xi}(\mathbf{p}) + \sum_{\mathbf{p}',lm} f_{ij;lm}(\mathbf{p} \cdot \mathbf{p}') \hat{\rho}_{lm}(\mathbf{r},\mathbf{p}'),$$

 We want to construct a Fermi liquid theory of graphene without sub lattice symmetry

 We know the noninteracting dispersion but what types of interactions can we have?

Symmetry of gapped graphene What short ranged interactions are symmetry allowed?

 $\hat{\Psi}_{\sigma}(\mathbf{r}) = \begin{pmatrix} u_{KA}(\mathbf{r}) & u_{KB}(\mathbf{r}) & u_{K'B}(\mathbf{r}) & -u_{K'A}(\mathbf{r}) \end{pmatrix} \cdot \hat{\psi}_{\sigma}(\mathbf{r})$

- For the low energy theory we expand in terms of the Bloch wave functions at the Dirac points and slowly varying envelope functions
- These Bloch wave functions have well defined symmetry properties under lattice transformations

Low energy theory

Aleiner, Kharzeev, Tsvelik, PRB 76, 195415 (2007) Kharitonov, PRB 85, 155439 (2012)

Interactions from symmetry

- We can approximate the interaction constants from matrix elements of the Coulomb interaction
- Due to symmetry there are 3 independent short ranged coupling constants + long ranged part of Coulomb
- Interactions form a natural hierarchy of scales related to their characteristic length scale

$$g \propto \int u_{\zeta\Sigma}^*(r) V(|r-r'|) u_{\zeta'\Sigma'}(r')$$

Upper band description

$$U(\mathbf{p}, \mathbf{p}', \mathbf{q}) = U_{\mathbf{p}, \mathbf{p}', \mathbf{q}}^{d} + U_{\mathbf{p}, \mathbf{p}', \mathbf{q}}^{s} \sigma \cdot \sigma + U_{\mathbf{p}, \mathbf{p}', \mathbf{q}}^{v \parallel} \tau^{\parallel} \cdot \tau^{\parallel}$$

+ $U_{\mathbf{p}, \mathbf{p}', \mathbf{q}}^{vz} \tau^{3} \tau^{3} + U_{\mathbf{p}, \mathbf{p}', \mathbf{q}}^{m \parallel} \tau^{\parallel} \cdot \tau^{\parallel} \sigma \cdot \sigma + U_{\mathbf{p}, \mathbf{p}', \mathbf{q}}^{mz} \tau^{3} \tau^{3} \sigma \cdot \sigma,$

- Six possibly distinct short ranged interaction functions + long ranged Coulomb
 - These could be considered inputs of the theory
- Momentum dependence comes from the spinor matrix elements

Neutral sound modes What kills first and second sound

Zero Sound

$$\omega \gg \frac{1}{\tau}$$

Collisionless

Regime generically exists at low enough temperature

Can be killed by Landau damping

10.1103/PhysRevB.103.075422

Zero sound Collisionless equations for the uncharged channels

$$\frac{\partial \delta \rho^{\mu}(\mathbf{k},\mathbf{r})}{\partial t} + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}} \delta \bar{\rho}^{\mu}(\mathbf{k},\mathbf{r}) + \frac{\partial n}{\partial \epsilon} \bigg|_{\bar{\epsilon}} \mathbf{v} \cdot \mathcal{F}^{\mu}$$

- Zero sound occurs in the collisionless limit
 - Sound oscillations are much faster than relaxation
 - e.g $T \rightarrow 0$ since $I \propto (T/E_F)^2$
- Relaxes through Landau damping

10.1103/PhysRevB.103.075422

Zero sound Is it damped?

$$-i\omega\rho^{\mu}(\mathbf{k},\mathbf{q})+i\mathbf{v}\cdot\mathbf{q}\delta\bar{\rho}^{\mu}(\mathbf{k},\mathbf{r})=-\frac{\partial n}{\partial\epsilon}\bigg|_{\bar{\epsilon}}\mathbf{v}\cdot\mathbf{c}$$

- Natural independent variable $|s| \equiv \left| \frac{\omega}{v_F q} \right|$
- Solutions for s > 1 undamped
- Solutions for s < 1 Landau damped

10.1103/PhysRevB.103.075422

Absence of zero sound **Generic Landau damping**

interaction f^{μ} is negative definite

10.1103/PhysRevB.103.075422

Due to the properties of the Coulomb

$\oint \frac{d\phi}{2\pi} (s - \cos\phi') [\nu^{\mu}(\phi)]^2 = \frac{G_s G_v p_F}{v_F} \oint \oint \frac{d\phi d\phi'}{2\pi} \nu^{\mu}(\phi) f^{\mu}(\phi - \phi') \nu^{\mu}(\phi')$

< ()

Landau damped, $\omega < v_F q$

What about first sound is there a hydrodynamic regime in neutral channels occurs when $\sum \delta \rho_p^{\mu}$ m = 0Density Conserved

- Existence of first sound rests on the behavior of the collision integral
- Specifically the relation between scattering time for different angular harmonics on the Fermi surface

Not

Current

Neutral channels How do these modes relax?

10.1103/PhysRevB.103.075422

Momentum is current

No neutral first sound Not hydrodynamics, but diffusion

- There is no frequency regime in which neutral first sound is not overdamped
- Finite temperature transport in neutral channels is ultimately diffusive

10.1103/PhysRevB.103.075422

Summary

Thank you for your attention!

- Symmetry dictated Fermi liquid theory of graphene
- Neutral zero sound and first sound in graphene are absent for all spin-valley channels.
- Transport of spin-valley quantum numbers is generically diffusive

ZMR, Fal'ko, Glazman, PRB, 2020

10.1103/PhysRevB.103.075422

