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The axial N oriet

L=i)(§—ieh)y ¢ — ¢’y Chiral phase

The axial symrrletry of the classical Dirac b i@ 5 rotation
Lagrangian is violated at the quantum
level ,
€
(Ouds) = -E-B  (AB

. . nJ5 (ABJ)
Axial charge is no longer conserved 214
INn the presence of an axial vector o2
potential anomalous currents are present JAHE = 5 b x E
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Anomalous (non-)conservation relations

INn path integral language — families of Zla] = /DW w]e—S[@Zﬁ[a],U[a]w]
theories related by a transformation |

generate a hierarchy of (non)- = det (J[a]) Z[0)
conservation laws

+Variation of the action leads to l
classical (non)-conservation 1 6Z|a] _ OdetJ 1
equations Z0] da

a=0(

Non-invariance of the measure leads
to guantum anomaly terms

Fujikawa, PRD 29 (1984) 0, (j5 ) + (classical) = A(x)
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Anomalies without symmetry

L=1i(P—ied+im) 2

€
- The classical symmetry is broken but Alz) = 02 LB (ABJ)
an anomaly Is Still present

| | Classical (Noether)
- This can most easlly be seen by

looking at the divergence of the 0,.jt = —2imyy°Y
assoclated Noether current
Quantum
+ For the massive Dirac, theory the » .
anomaly function is the same as the 0u(Js ) = —2im{Yy°Y) + Alx)
Mmassless case
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Low energy model

L= |ild— By — mleir — AWUW_ ) Dirac + other 4x4

H =

Valley

The new terms admit a simple interpretation
N a condensed matter system:

- m IS Internode charge mixing

- g IS Internode spin MIxing




Low energy model

[ —

H =

Y

Spin
l
(k— b) O — b()

Such terms could be realized

- As mean-field decoupling of interactions

- Proximity induced couplings

- Dynamically within a Flogquet Hamiltonian

QD — BS — mleir — AWUW_ ) Dirac + other 4x4

—(k+b)-o+by| . Vaey




Modification of the anomaly function

2

e e )
A(f)zQWQE-B 7TZE-Re[gm]
0, (75 ) + (classical) = A(x) (ABJ) I

New terms act in place of the magnetic field

- The presence of the combined terms m and g leads to a term in the
function

- This term Is zero without both m and g present



Removing the axial vector

- We may perform a change of variables to W = e~ 20 ey
remove the axial vector b* from the Fermionic D = o —2ib-xy°
Lagrangian

r — ZZ/ _ZlD - ‘m‘ei(a—Zb-x)fy5 o Auye—%b-xqﬁ_ wl

+This Introduces a new term in the action Lj=ib-xAlr)
through the non-invariance of the 2 .
measure — the anomaly Alr) = -—E B - <E-Re[gm”]
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Induced current

L:J — b - .CC.A(CC)
- The coupling of the added T 2 o
terms allows for new =ib-x E-B E - Re [gm™]
L Y2 2
contributions to the current i
+This current must be =

understood In a manner
similar to the Chiral Magnetic
Effect

, 0S5 e )




Induced current

- The coupling of the added
terms allows for new
contributions to the current

- This current must be
understood In a manner

similar to the Chiral Magnetic
Effect

g — §:72

L:J — b - .CC.A(CC)

— b

JJ =

L

Q2

0S5

0A

E-B €2E-Re[gm*]

e
= pb()‘mwz COS Q.
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L attice model

- The connection between the low-
energy theory and more realistic
models of the solid state can be

subtle

- We consider a lattice model of
Weyl fermions to show that the
oredicted current is indeed
physical

G(k) — tl S1n ]CZ

d(k) = (

sin k.,
sin k,,
24 cosb, — ) . cosk;
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L attice model

- H, describes massless Weyl

particles in the presence of an axial
vector b

. H, adds a mass term

- H, will provide a coupling to a

space and time dependent field g 7o mz e e p + hc
"= N 2 Ck— .C.
k

H, = Z cLLbJZg(T) - ock_p + h.c.
k
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‘Linear response’

- \We calculate current as ‘linear
response’ 1o the spacetime-

dependent vector g(t) in the presence

Oof m

In particular we are interested In the
DC current response — q — 0 before

w — ()

N.B. Current response must vanish

N the opposite limit (w — O first)

7 .Qma — )
xi(lhm, Q) = 5 0 —q)

lim lim ;" (w, q)
w—0 q—0

Ern_

k— (b k—(b k4 (b k+ (b
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s o< bo|m|g. cos Low energy > ib- 2—FE - Re [gm”]
/A8
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Summary

We considered the axial anomaly in

the presence of additional symmetry | (classical) = A(x)
breaking terms

62 e

A(x)= —E -B E.R *

We found a new contribution to the () 272 T2 e lgm’]
divergence of the axial current

indicating an additional contribution
to the anomaly

| 7w ‘ jJ o bg|lm|g. cos a

The low-energy theory predicted a DC | - /

current response to introduced terms o e 5

which was reproduced in a lattice B

el Woom o o om 0w o
Thank you

X bg cos o

d|lm|dg
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