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• The axial symmetry of the classical Dirac 
Lagrangian is violated at the quantum 
level 

• Axial charge is no longer conserved 

• In the presence of an axial vector 
potential anomalous currents are present

The axial anomaly in brief
L = i ̄

�
/@ � ie /A

�
 

jAHE =
e2

2⇡2
b⇥E

jCME =
e2

2⇡2
b0B *

h@µjµ5 i =
e2

2⇡2
E ·B

 ! ei✓(x)�
5

 

 ̄ !  ̄ei✓(x)�
5

Lb =  ̄/b�5 ⇒

3

(ABJ)

Chiral phase 
rotation
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Anomalous (non-)conservation relations
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• In path integral language — families of 
theories related by a transformation 
generate a hierarchy of (non)-
conservation laws 

• Variation of the action leads to 
classical (non)-conservation 
equations 

• Non-invariance of the measure leads 
to quantum anomaly terms
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Anomalies without symmetry

Classical (Noether)

Quantum
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(ABJ)• The classical symmetry is broken but 
an anomaly is still present 

• This can most easily be seen by 
looking at the divergence of the 
associated Noether current 

• For the massive Dirac, theory the 
anomaly function is the same as the 
massless case
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Low energy model

The new terms admit a simple interpretation 
in a condensed matter system: 

• m is internode charge mixing 

• g is internode spin mixing

L =  ̄
h
i /D � /b�5 � |m|ei↵�

5

��µ⌫�
µ⌫
i
 

E

µ
b0

b0 m, g

kzbz0−bz

Spin

ValleyH =


(k� b) · � � b0 mei↵ + g · �
me�i↵ + g⇤ · � �(k+ b) · � + b0

�

Dirac + other 4x4

6



Low energy model

Such terms could be realized


• As mean-field decoupling of interactions


• Proximity induced couplings


• Dynamically within a Floquet Hamiltonian
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Modification of the anomaly function

New terms act in place of the magnetic field
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• The presence of the combined terms m and g leads to a term in the anomaly 
function 

• This term is zero without both m and g present
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Removing the axial vector
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• We may perform a change of variables to 
remove the axial vector bµ from the Fermionic 
Lagrangian

• This introduces a new term in the action 
through the non-invariance of the 
measure — the anomaly
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Induced current

⇒

• The coupling of the added 
terms allows for new 
contributions to the current 

• This current must be 
understood in a manner 
similar to the Chiral Magnetic 
Effect 
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Induced current

⇒

• The coupling of the added 
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Lattice model
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• The connection between the low-
energy theory and more realistic 
models of the solid state can be 
subtle 

• We consider a lattice model of 
Weyl fermions to show that the 
predicted current is indeed 
physical



Lattice model
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• H0 describes massless Weyl 
particles in the presence of an axial 
vector b 

• Hm adds a mass term 

• Hg will provide a coupling to a 
space and time dependent field g
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‘Linear response’
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• We calculate current as ‘linear 
response’ to the spacetime-
dependent vector g(𝜏) in the presence 
of m 

• In particular we are interested in the 
DC current response — q → 0 before   
ω → 0 

• N.B. Current response must vanish 
in the opposite limit (ω → 0 first)
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Low energy

Linear
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Summary

Thank you
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• We considered the axial anomaly in 
the presence of additional symmetry 
breaking terms 

• We found a new contribution to the 
divergence of the axial current 
indicating an additional contribution 
to the anomaly 

• The low-energy theory predicted a DC 
current response to introduced terms 
which was reproduced in a lattice 
model
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A(x) = I(x) + Ĩ(x)
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