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Wia(K)

A quick note on notation g | vin®
Pauli matrices l//K’B(l({li)
—Yka

We will be largely
concerned with physics of
the conduction band

* Yry IS a@spinor

e Spin matrices ¢ act on

e Valley matrices 7 act on




Part |1 - Absence of neutral first and second
sound (spin rotation invariant case)



Fermi Liquid graphene

A multicomponent Fermi liquid

60 1) = E@) + D fizm® - PVP1(x. P,
b E(p) = S+ AT —p

 We want to construct a
Fermi liquid theory of R
graphene without sub
lattice symmetry

e We need to construct the

quasiparticle excitation
energy functional € (in
terms of the density
matrix p)

l.
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Symmetry of gapped graphene

What short ranged interactions are symmetry allowed?

W (r) = (uga(t) tgp(®) gp(t) —itg(r)) - 7,(r) Low energy theory
* For the low energy theory we expand Expand around K and K’ points
In terms of the
at the Dirac points and /\
Wia(K)
| 2, Wip(K)
» These Bloch wave functions have well TRT L (k)

defined symmetry properties under

e (K
lattice transformations Via(K) \ /

Aleiner, Kharzeev, Tsvelik, PRB 76, 195415 (2007)
Kharitonov, PRB 85, 155439 (2012)
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Symmetry of gapped graphene

What short ranged interactions are symmetry allowed?
W (r) = (uga(t) tgp(®) gp(t) —itg(r)) - 7,(r) Low energy theory

Expand around K and K’ points

C3 : ei%ig /\

Wi a(K)
Wip(K)
Wi p(K)

Translation T . eTT — YW A(k) ‘\ /K

Time Reversal @ . GV K

Rotation

Mirror plane GV 22%2 ‘Pk —

Aleiner, Kharzeev, Tsvelik, PRB 76, 195415 (2007)
ZMR, Fal’ko, Glazman, PRB, 2020 Kharitonov, PRB 85, 155439 (2012)
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Interactions from symmetry

. We Can.approximate the ¢ j ugkz(r)V( = Dt ()
interaction constants from
matrix elements of the

Coulomb interaction
Long Range

* Due to symmetry there are 3 Strongest V(q)
independent short ranged
coupling constants + long

ranged part of Coulomb g1~ V(| K-=K)
* Interactions form a natural 8.~ V(|b |)
hierarchy of scales related to g..A
their characteristic length scale Weakest 800 ™~
Vi K — K,

Short Range
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Upper band description

)N — 77d s VII . 2l
U(p,p,q)—Uppq+Uppqa c+ U | T

+0%, P+ UM @l 7o - g
p p q pa ,9 I~

e Six possibly distinct short ranged
interaction functions + long ranged
(VK - 2+ (AT ), = Vv + Ay Coulomb

 These could be considered inputs of
the theory

« Momentum dependence comes from
the spinor matrix elements
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Fermi Liquid graphene

A multicomponent Fermi liquid

/ — fd s : VII || 7l
€;(p. 1) = E(p) + ny @ = PP (T, P, 0P D = Fya thypa® Oy T
il ;Zp .q v I”n Ill . '  1;% IZ’ q73735 “:

 The Fermi liquid interaction
functions inherit the invariant
structure

 We now have all the pieces of
the Fermi liquid theory

 Symmetry suggests a particular
parametrization
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Fermi Liquid graphene . |nstead of spin and valley

A multicomponent Fermi liquid Indices let’s talk about
symmetry distinct channels

1 .
K n(r,p) = GG, tr 6570 (r, p)
(r,p) : tr op(r, p)
S(r,p) = rop(r,
p GG p(r,p
Y(r,p) = tr 7p(r,
K, (r,p) GG, p(r,p)
. 1 [
M/(r — tr 7.6.p(r
(1, p) GG, 0,p(r, p)
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Landau-Silin kinetic theory

Dynamics p=ng+ ) Xsp*
0op*(K, r) 0 __ on 1 A
Fv .- —opt(K,r) V.- FH= tr X*I[op]
ot or de | G.G, (. p) = 1 tt 6.5 5(E, )
| GG, ’
* Collective modes associated with oscillatory 1
fluctuations of the density matrix op* (r,p) = e tr 6p(r, p)
* Dynamics governed by the linearized Sl :
Landau-Silin kinetic equation (r,p) = tr 7p(r, p)
GG, ’

 Equations for the symmetry distinct
components decouple

e e.9. XY =[[Y]

|
r,p) = tr (T,
(r,p) GG, p(r,p)
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Conventional Sound o «v.g

(uncharged) 2D FL
0P ®D v 2 sprkr) + 2 /v/w— L Risp)
o or DT et 166G, .
Zero Sound First Sound
: : <K<K :
> — L — @ —
T * For charged liquids the T T
Coulomb potential turns
Collisionless both into the plasmon Collisional
Are’n
\ {2

Plasmon
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Other spin-valley channels

1
Well studied and generic to 2D FL ~ Plasmon 7(r,p) = o T p(r,p)

]
(r,p) = tr op(r, p)

What analogues of first N o S

and zero sound exist | (r,p) = : tr 75(r, p) |

here? Multi valley G,y |
' materials '

1
r,p) = tr (T,
(r, p) GG p(r,p) 4
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Neutral sound modes
What kills first and second sound

dop* (K, r) 0 Sp*(k, 1) on /V@ : tr X*1[50)]
LY . — 1) . = 1§
ot or " GG, !

21
Zero Sound First Sound
1 Regime generically Not guaranteed to | 1
> — exists at low enough exist — <0< —
T temperature 11 (%)
Collisionless Collisional
Can be killed by Can be killed by

Landau damping collisional damping
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Zero sound

Collisionless equations for the uncharged channels

05p"(K, 1) 0 S on o 1. i , 1 V
ot or " o | V 4 ® > =

4 occurs when

e /ero sound occurs In the collisionless limit

e Sound oscillations are much faster than relaxation

e e.g 1 — 0Osince ] (T/EF)2

* Relaxes through Landau damping
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Zero sound 1
Is it damped? @ > —
: : 5 on
—iwpt(K, q) +iv - qopr(K,r) = - V- FH

 Natural independent variable
0,

Vrq

5| =

» Solutions for s > 1 undamped

s < 1

 Solutions for s < 1 Landau damped Landau damped
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Absence of zero sound

Simplest model

e For model of an attractive
constant interaction only
model it can be shown
there IS no zero sound

0,
F5‘<O — |s|=|—]| <1
VFq

« Landau damped, @ < Vg
Klein, Maslov, Pitaevskii, Chubukov, PRR 1, 033134 (2019)

Klein, Maslov, Chubukov, Npj Quantum Materials 5, 55 (2020)
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Absence of zero sound

Generic Landau damping

on
» At low temperature U —_ | ,m
deviations of the opr(p.T) = oe _U (9. 1)
occupation function are ¢
restricted to the Fermi
surface

* This allows us to rephrase
the zero sound equation a
self consistent integral What is f*?
expression

d d
ﬂgz—f@—wsqﬁ')[uﬂ(qﬁnz i Fﬂgﬂg DI m ) — ¢ )
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Absence of zero sound
What is f?

Long Range

 We recall that we estimated the interaction
functions by taking matrix elements of the

Strongest V(q)

Coulomb potential g1~ V(IK-K'|)
* The leading contribution to the interaction 8.~ V(|b |)
functions comes from the Coulomb g A
pOtent|a| Weakest gOO ~
Vi K-K’

Short Range

f1(0) ~ — lV [Zk sin ﬁ] coS” (ﬁ) 1+ A sin’ (g)
) B2 2] (A+Ep)? 2
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Absence of zero sound

Generic Landau damping

Due to the properties of the Coulomb
interaction f* is negative definite

d dod
ﬂgz—f@—cosqb')[uﬂ(qsnz sl Fﬂ% P ) — )

<0 = s<1. < ()

| Landaudamped, @ < vpq
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What about first sound?

collisional kinetics
occurs when

dop”(K, r 0 0
pr(k,r) T s Pl ey 1 1
- . 5| — LK< —
€ 1 P
5pH(k, 1) = ZZ 2. " hrul(r) o 5 U ?
m de i
m

e Existence of first sound rests on the behavior of
the collision integral

» Specifically the relation between scattering time for
different angular harmonics on the Fermi surface
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What about first sound

Is there a hydrodynamic regime In neutral channels
occurs when

m =0 ). o0} Density 1 1
p Conserved — KL< —
m = ‘ 1 ‘ Zcos gpr(Sp]ﬁ‘ Current g 2
P
nm = 2 2 SoH ?
‘ ‘ ;ccis b,.00; Not ¢

e Existence of first sound rests on the behavior of
the collision integral

» Specifically the relation between scattering time for
different angular harmonics on the Fermi surface
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What about first sound

Is there a hydrodynamic regime In neutral channels

1 1 Behaves similar to

- << ) << — X T2 the charge channel
3 (%)

?

We have to evaluate
the collision integral to
know
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Collision integral in 2D

Allowed scattering processes

* At low temperatures

collision are restricted to the
Fermi surface

* There are two types of
allowed scattering
processes

Collinear

Laikhtman, PRB 45, 1259 (1992)
Ledwith, Guo, Levitov, Ann. of Phys. 411, 167913 (2019)
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Neutral channels

How do these modes relax?

O Aj=0

Momentum iIs current

— E
= — — = /
-~ —— -

= But not here
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Collision integral

again by symmetry distinct channels

_ _ apiys | -
wﬂ (L = MW B3 + 5 = By =

Transforming from spin- Focusing on :
valley indices to these types ‘ ‘ AJ l

symmetry distinct of scattering
channels

S > L ?

tI'(X'MI ) _)Iﬂ(pz) - Z

p,p P;
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Neutral channels

Dominant contributions

* Phase space for "
scattering in 2D Is R Y R g 930)<Wﬂ  (Osp) + W (QSC)).
divergent for T/ Jo sinfgc —.collinear -.,head-on
forward and back

scattering -
Backscattering
e These are the o @ » 0 T
leading contributors
to transport Head on Collinear
scattering
* The two have Forward

different origins



Neutral channels

Backscattering

 Phase space for
scattering in 2D Is
divergent for
forward and back
scattering

* Backscattering
contribution Is due
to short ranged
Interactions

. dQSC
lim : (1 — COS 930) — OO
0—nx S1N QSC

Head on

Backscattering is cut off by
Kinematic constraints on

scattering @ < 7 — 0.

(27)°6 ( ZJ: p J> 276 ( ZJ: eJ>

10.1103/PhysRevB.103.075422

Collinear
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Neutral channels

Backscattering

dOsc :
11 I — 0 V 0
» Phase space for o sinsg . C°8¢s0) ! VCoulomb(Pse) " = oo
scattering in 2D Is
divergent for |
Head on Collinear

forward and back
scattering

* Backscattering
contribution is due
to short ranged

interactions Forward scattering is cut off
by the Thomas-Fermi
 Forward scattering scattering wave vector 111 qTF

due to long ranged
part of Coulomb
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Neutral channels

Dominant contributions

* Phase space for 1 _1 : , :
scattering in 2D Is T T T Backscatter iForward
divergent for
forward and back Short range
scattering

| \/Mz_Az
x T?1n

* | eading log ‘Backscatter 3
dependence comes
from these regions

Long ranged (screened) Coulomb

IM2 o AZ
x T%1n
TForward VqTF
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Transport rates

Two regimes A ~ EF Non-relativistic
» Generically the rates scale ,
9 . 1 i
1 log(---) with prefactors o X (In(T/Eg) + In(Ep/vqry))
dependent on the regime te(1) F

 |n the relativistic case
backscattering is suppressed

due to Berry curvature effects ANE<< EF Relativistic
» Only short ranged interactions 1 - ., ,
contribute to the backscattering (T . E_% 18" In(ER/T) + a® In(Ep/vary) §
I

amplitudes



No neutral first sound
Not hydrodynamics, but diffusion

* There Is no frequency regime in which
neutral first sound is not overdamped

* Finite temperature transport in neutral
channels is ultimately diffusive

a)Tl << 1

2

y2
Py L b u
D 2T,[r(1+F)

10.1103/PhysRevB.103.075422

First sound regime Is
“squeezed out”



Summary
for Part |

o Symmetry dictated Fermi liquid
theory of graphene

* Neutral zero sound and first
sound in graphene are absent for

all spin-valley channels.

* [ransport of spin-valley quantum
numbers is generically diffusive

ZMR, Fal’ko, Glazman, PRB, 2020

10.1103/PhysRevB.103.075422




Part Il - Magnetic fields and
extrinsic SOC




Absence of spin zero sound and Silin modes

SOVIET PHYSICS JETP VOLUME 6 (33), NUMBER 5 May, 1958

* Arguments of the previous section
generally lead to spin zero modes o
bei ng Ove rd am ped P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Received by JETP editor May 6, 1957
J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1227-1234 (November, 1957)

OSCILLATIONS OF A FERMI-LIQUID IN A MAGNETIC FIELD

° Th IS IS CO m mon Iy true I n S U(2) A study is made of the spin oscillations of a paramagnetic Fermi-liquid (He®) placed in a
. . . = - . constant magnetic field at low temperatures, where collisions can be ignored.
spin invariant Fermi liquids

* |n finite magnetic field there are
- - - : Spin diffusion and spin echoes in liquid
undarr_\ped collective excitations In 'He at low temperature
the spin channel

A. J. LEGGETT

School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton
MS. received 3rd July 1969, in revised form 29th September 1969

* A similar picture holds in the
presence of spin orbit coupling



Spin oscillations in magnetic field
Silin-Legget mode

OSCILLATIONS OF A FERMI-LIQUID IN A MAGNETIC FIELD

s < 1

Landau damped

Kohn, PR 123, 1242 (1961)



Spin oscillations with SOC

Stein, v. Klitzing, Weimann, PRL 51, 130 (1983)
Dickmann, Kukushkin, PRB 71, 241310 (2005)

Interactions

s < 1

Landau damped




Extrinsic SOC in graphene

e Sub lattice symmetry breaking H,=vpp -+ Az + At0,+ z2- (6 X X).
iInduced gap

e Valley Zeeman

NIV N

e.g. Wang et al., PRX 6, 041020 (2016)



Extrinsic SOC in graphene

In the upper band
e.g. Wang et al., PRX 6, 041020 (2016)

H,=vpp - 2+ AX 7, + A1,0,+ 1gZ - (6 X X).

Upper band projection

Hf =¢e,+a(p)- (6 Xp)+ 4672,

Effective Rashba C li —
ective Rashba Coupling a(p) VD/IR/GP



SOC Fermi liquid graphene

with magnetic field

: oy : / —77d s : vil I,
* Previous Fermi Liquid theory Up.P. @ = Uy gt Uppg® 0+ Uy pg® o7
plUS +Ul‘)’,zp,,qf3’c3 + Uﬂgqfn 1o - 6+ Ul q?

 Zeeman coupling to Iin plane
magnetic field

e Extrinsic SOC

* Coupling to external AC €, P
electric field C op



EDSR of spin-valley modes

* |n the presence of SOC,
electric field couples to spin

* Here the response to the AC
electric field of the probe is
much stronger than to the AC
magnetic field

Rashba, Soviet Physics Uspekhi 7, 823 (1965)
Rashba, Efros, Phys Rev Lett 91, 126405 (2003)
Maiti, Zyuzin, Maslov, PRB 91, 035106 (2015)




Equilibrium distribution

* |n the presence of Zeeman

and SOC, equilibrium
density matrix has finite
spin and valley-spin
components

* At lowest order these
components are
proportional to the energy
change from the added

terms

| - A -
Ceq = € — <_ﬂSHO —a(p)(p X Z)) + 0+ 40,7,

2

Po = nF‘|‘Seq . G-l-Meq + 0T,

Interactions with the equilbrium
polarizations renormalize the effective

couplings

1 - a(p) - A
2 a(p): ’ l:
l-I-FS 1+Ff 1_|_F6nz

~/

Hs = Hy




Collisionless transport equation
T=0

Va\

V2 N NV AN

p (] /\ Va\N ° /\ /\ an /\ — 1
— 1] 0€, — iley, 0pl = ——eK - V_é,. Plasmon /(I',p) = tr 6y7p0(T, P)
dt [ ,0()] [ 0 10] 06 p 0 GSGV

Linearized kinetic equation

Silin mode sector . —

Modes separate into
two sectors

Optically inactive ﬁ ﬁ




Momentum summed equations

e Here we focus on the the
Isotropic densities

SO:ZSP

P
M; = ) M;
P

 Rashba induces coupling to
other harmonics



Decoupled limit

Ap K \a)m:m -, ol

* For simplicity we consider the
limit where angular harmonics
approximately decouple

+ In this limit s, and M, form a
closed system of equations

But see Kumar, Maslov, PRB 95, 165140 (2017).




Decoupled limit

Ip K o) — ]

* For simplicity we consider the
limit where angular harmonics
approximately decouple

+ In this limit s, and M, form a
closed system of equations

* Spin and valley spin are mixed
by the valley Zeeman coupling

w, =uH, o, =yw, y=

But see Kumar, Maslov, PRB 95, 165140 (2017).

| + FJ"
1 + Fy

Renormalized by Interactions

0Sg n - .
E_a)S'XXSO_l_Z/IZXM():FS
oM a )
— 0, X X Mg +2yAzXsy=F,
ot

x axis defined by H,,



Re-expressing the spin/valley-spin sector

» A straightforward change of basis
gives two decoupled vector
equations

e There are two sectors

* A low frequency (heavily over l; = b; x1; =1,
damped) sector 1. || b,

Driven precession
* A finite frequency undamped

sector containing the
conventional Silin mode 1, L b,



Valley-spin Silin modes

* There are two eigenmodes
adiabatically connected to

» For A = 0, the former must go to the
Larmor frequency

* The latter mode may be renormalized
away from the non-interacting
frequency in general




Valley-spin Silin modes

* There are two eigenmodes %
adiabatically connected to

e The modes do not cross, but

become degenerate in A/w, = o0
limit




Driving via AC electric field

polarization selective driving

e Silin subspace is i box]—f > i+
diagonalized by circular AR & w + i0 F o,
polarizations
Va\ /\ ° bi Va\
€ix =Y TI— XY

W x axis defined by H,,

* Each mode Is excited by Spin .

one linear polarization of

electric field (with respect to
H ) Connected to
0

Valley staggered spin



Optical absorption from energy change

Time averaged free energy change

+ Since the modes couple to £ o y
field, they contribute to the — = J_wE(_ 0)6X(0)E(w)
optical conductivity ot 21

. . Electric enerqy absorption
e The resonant contribution can 9y P

be extracted from change in the
Free energy due to pumping of
the spin-valley modes Fermi liquid theory

» As [; are eigenmodes they J = Z tr[ pe]
contribute two decoupled

k
sectors to the free energy f=fill,E]+ L, E,]
> ~x Y



Contributions to conductivity

* Spin-valley modes contribute resonant peaks the real part of the conductivity

/12
R (w) <Fg — (F§ - ‘1F’”Z)—> 10,8(0° — o)

}/C()l
Ro" @) o« ( Fre — (57 — 2 ) anb(@? — )
() — — nw-o(w? — w
l W3 0 0 o Y3 . g



Contributions to conductivity

Damping effects R

» Realistically expect D’yakonov-
Perel and Elliot-Yafet spin flips

e This broadens the delta function
Into a Lorentzian

» Unfortunately for typical samples
the resonant peaks lie in the
shoulder of the Drude peak




Contributions to conductivity

Damping effects R

* Unfortunately for typical samples \
the resonant peaks lie in the

shoulder of the Drude peak

* For larger Rashba couplings

stronger signals can be obtained

 Modes will change their angular
momentum character in this case

 In samples where 7, > 74, peaks
should be more visible




Summary
for Part 1|

» External Zeeman and/or extrinsic
SOC promote overdamped spin-
valley excitations of graphene to
well-defined oscillatory modes

* Spin and valley-staggered spin
modes can be excited selectively
via AC electric field

 Both contribute absorption peaks
to the optical conductivity
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Final Summary

o Symmetry dictated Fermi liquid » External Zeeman and/or extrinsic
theory of graphene SOC promote diffusive spin-valley
excitations of graphene to well-
 Neutral zero sound and first defined oscillatory modes
sound in graphene are | |
overdamped for all spin-valley * Spin and valley-staggered spin

modes can be excited selectively

channels. . Al
via AC electric field

e [Jransport of spin-valley quantum

numbers is generically diffusive  Both contribute absorption peaks

to the optical conductivity

ZMR, Fal’ko, Glazman, PRB 103, 075422, 2020 ZMR, Maslov, Glazman
10.1103/PhysRevB.103.075422 In Prep.
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