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A quick note on notation
Pauli matrices

•  is a spinor


• Spin matrices  act on


• Valley matrices  act on


• Sublattice matrix  acts on

ψζΣ

σ

τ

Σ

Ψk =

ψKA(k)
ψKB(k)
ψK′ B(k)

−ψK′ A(k)

We will be largely 
concerned with physics of 
the conduction band

ψKA(k)
ψKB(k)
ψK′ B(k)

−ψK′ A(k)
ψKA(k)
ψKB(k)
ψK′ B(k)

−ψK′ A(k)
ψKA(k)
ψKB(k)
ψK′ B(k)

−ψK′ A(k)



Part I - Absence of neutral first and second 
sound (spin rotation invariant case) 



Fermi Liquid graphene
A multicomponent Fermi liquid

K

K′ 

ϵij(p, r) = ξ(p) + ∑
p′ ,lm

fij;lm(p ⋅ p′ ) ̂ρlm(r, p′ ),

• We want to construct a 
Fermi liquid theory of 
graphene without sub 
lattice symmetry


• We need to construct the 
quasiparticle excitation 
energy functional  (in 
terms of the density 
matrix )

ϵ

ρ

ξ(p) = v2p2 + Δ2 − μ



Symmetry of gapped graphene
What short ranged interactions are symmetry allowed?

Aleiner,  Kharzeev, Tsvelik, PRB 76, 195415 (2007) 

Kharitonov, PRB 85, 155439 (2012)

̂ ⃗ψ k =

ψKA(k)
ψKB(k)
ψK′ B(k)

−ψK′ A(k)

K

K'

Expand around K and K’ points

Low energy theory

• For the low energy theory we expand 
in terms of the Bloch wave functions 
at the Dirac points and slowly varying 
envelope functions


• These Bloch wave functions have well 
defined symmetry properties under 
lattice transformations

Ψ̂σ(r) = (uKA(r) uKB(r) uK′ B(r) −uK′ A(r)) ⋅ ̂ ⃗ψ σ(r)

10.1103/PhysRevB.103.075422



Symmetry of gapped graphene
What short ranged interactions are symmetry allowed?

Aleiner,  Kharzeev, Tsvelik, PRB 76, 195415 (2007) 

Kharitonov, PRB 85, 155439 (2012)

C3 : ei π
3 Σ̂3

Θ : σVK
T : e

2πi
3 ̂τz

Ψk =

ψKA(k)
ψKB(k)
ψK′ B(k)

−ψK′ A(k)
C3V

A

B

K

K'

Expand around K and K’ points

Low energy theory

Rotation

Translation

Time Reversal

Ψ̂σ(r) = (uKA(r) uKB(r) uK′ B(r) −uK′ A(r)) ⋅ ̂ ⃗ψ σ(r)

ZMR, Fal’ko, Glazman, PRB, 2020

10.1103/PhysRevB.103.075422

σV : Σ̂2 ̂τ2Mirror plane



• We can approximate the 
interaction constants from 
matrix elements of the 
Coulomb interaction


• Due to symmetry there are 3 
independent short ranged 
coupling constants + long 
ranged part of Coulomb


• Interactions form a natural 
hierarchy of scales related to 
their characteristic length scale

Interactions from symmetry

g⊥⊥ ∼ V( K − K′ )

gzz ∼ V( b )

g̃00 ∼
gzzΔ

vF K − K′ 

g ∝ ∫ u*ζΣ(r)V( |r − r′ | )uζ′ Σ′ 
(r′ )

V(q)
Long Range

Short Range

Strongest

Weakest

10.1103/PhysRevB.103.075422



Upper band description

(vk ⋅ Σ + ζΔΣ3)χkζ = v2k2 + Δ2χkζ

U(p, p′ , q) = Ud
p,p′ ,q + Us

p,p′ ,qσ ⋅ σ + Uv∥
p,p′ ,qτ∥ ⋅ τ∥

+Uvz
p,p′ ,qτ3τ3 + Um∥

p,p′ ,qτ∥ ⋅ τ∥σ ⋅ σ + Umz
p,p′ ,qτ3τ3σ ⋅ σ,

• Six possibly distinct short ranged 
interaction functions + long ranged 
Coulomb


• These could be considered inputs of 
the theory


• Momentum dependence comes from 
the spinor matrix elements

10.1103/PhysRevB.103.075422



Fermi Liquid graphene
A multicomponent Fermi liquid
ϵij(p, r) = ξ(p) + ∑

p′ ,lm

fij;lm(p ⋅ p′ ) ̂ρlm(r, p′ ), f(p, p′ , q) = f d
p,p′ ,q + f s

p,p′ ,qσ ⋅ σ + f v∥
p,p′ ,qτ∥ ⋅ τ∥

+f vz
p,p′ ,qτ3τ3 + f m∥

p,p′ ,qτ∥ ⋅ τ∥σ ⋅ σ + f mz
p,p′ ,qτ3τ3σ ⋅ σ,

• The Fermi liquid interaction 
functions inherit the invariant 
structure


• We now have all the pieces of 
the Fermi liquid theory


• Symmetry suggests a particular 
parametrization

10.1103/PhysRevB.103.075422



Fermi Liquid graphene
A multicomponent Fermi liquid

n(r, p) =
1

GsGv
tr ̂σ0 ̂τ0 ̂ρ(r, p)

s(r, p) =
1

GsGv
tr ̂σ ̂ρ(r, p)

Y(r, p) =
1

GsGv
tr ̂τ ̂ρ(r, p)

Mj
i (r, p) =

1
GsGv

tr ̂τi ̂σj ̂ρ(r, p)
∥ , ⊥

• Instead of spin and valley 
indices let’s talk about 
symmetry distinct channels

K

K′ 

10.1103/PhysRevB.103.075422



Landau-Silin kinetic theory
Dynamics

n(r, p) =
1

GsGv
tr ̂σ0 ̂τ0 ̂ρ(r, p)

s(r, p) =
1

GsGv
tr ̂σ ̂ρ(r, p)

Y(r, p) =
1

GsGv
tr ̂τ ̂ρ(r, p)

Mj
i (r, p) =

1
GsGv

tr ̂τi ̂σj ̂ρ(r, p)
∥ , ⊥

∂δρμ(k, r)
∂t

+ v ⋅
∂
∂r

δρ̄μ(k, r) +
∂n
∂ϵ

ϵ̄

v ⋅ ℱμ =
1

GsGv
tr X̂μ ̂I[δ ̂ρ]

̂ρ = nF + ∑ X̂μδρμ

• Collective modes associated with oscillatory 
fluctuations of the density matrix 


• Dynamics governed by the linearized 
Landau-Silin kinetic equation


• Equations for the symmetry distinct 
components decouple


• e.g. 

δρμ

ℒY = IY[Y]

10.1103/PhysRevB.103.075422



Conventional Sound
(uncharged) 2D FL

ω ≫
1
τ

1
τ1

≪ ω ≪
1
τ2

First SoundZero Sound

CollisionalCollisionless

ω ∝ vFq

Plasmon

ω ≈
4πe2n

m*
q

∂δρμ(k, r)
∂t

+ v ⋅
∂
∂r

δρ̄μ(k, r) +
∂n
∂ϵ

ϵ̄

v ⋅ ℱμ =
1

GsGv
tr X̂μ ̂I[δ ̂ρ]

• For charged liquids the 
Coulomb potential turns 
both into the plasmon

10.1103/PhysRevB.103.075422



Other spin-valley channels

n(r, p) =
1

GsGv
tr ̂σ0 ̂τ0 ̂ρ(r, p)PlasmonWell studied and generic to 2D FL

s(r, p) =
1

GsGv
tr ̂σ ̂ρ(r, p)

Y(r, p) =
1

GsGv
tr ̂τ ̂ρ(r, p)

Mj
i (r, p) =

1
GsGv

tr ̂τi ̂σj ̂ρ(r, p)

What analogues of first 
and zero sound exist 
here? Multi valley 

materials

10.1103/PhysRevB.103.075422



Neutral sound modes
What kills first and second sound

ω ≫
1
τ

1
τ1

≪ ω ≪
1
τ2

First SoundZero Sound

CollisionalCollisionless

∂δρμ(k, r)
∂t

+ v ⋅
∂
∂r

δρ̄μ(k, r) +
∂n
∂ϵ

ϵ̄

v ⋅ ℱμ =
1

GsGv
tr X̂μ ̂I[δ ̂ρ]

Regime generically 
exists at low enough 
temperature

Not guaranteed to 
exist

Can be killed by 
Landau damping

Can be killed by 
collisional damping

10.1103/PhysRevB.103.075422



Zero sound
Collisionless equations for the uncharged channels

∂δρμ(k, r)
∂t

+ v ⋅
∂
∂r

δρ̄μ(k, r) +
∂n
∂ϵ

ϵ̄

v ⋅ ℱμ =
1

GsGv
tr X̂μ ̂I[δ ̂ρ] ω ≫

1
τ

occurs when
• Zero sound occurs in the collisionless limit


• Sound oscillations are much faster than relaxation


• e.g  since 


• Relaxes through Landau damping

T → 0 I ∝ (T/EF)2

10.1103/PhysRevB.103.075422



Zero sound
Is it damped?

−iωρμ(k, q) + iv ⋅ qδρ̄μ(k, r) = −
∂n
∂ϵ

ϵ̄

v ⋅ ℱμ

ω ≫
1
τ

s > 1

s < 1
Landau damped

• Natural independent variable 




• Solutions for  undamped


• Solutions for  Landau damped

|s | ≡
ω

vFq

s > 1

s < 1

10.1103/PhysRevB.103.075422



Absence of zero sound
Simplest model

• For model of an attractive 
constant interaction only 
model it can be shown 
there is no zero sound


• Landau damped, ω < vFq

Fμ
0 < 0 ⟹ |s | ≡

ω
vFq

< 1

Klein, Maslov, Pitaevskii, Chubukov, PRR 1, 033134 (2019) 
Klein, Maslov, Chubukov, Npj Quantum Materials 5, 55 (2020)

10.1103/PhysRevB.103.075422



Absence of zero sound
Generic Landau damping

∮
dϕ
2π

(s − cos ϕ′ )[νμ(ϕ)]2 =
GsGvpF

vF ∮ ∮
dϕdϕ′ 

2π
νμ(ϕ)fμ(ϕ − ϕ′ )νμ(ϕ′ )

δρμ(p, r) ≡ −
∂n
∂ϵ

ϵ̄

νμ(ϕ, r)• At low temperature 
deviations of the 
occupation function are 
restricted to the Fermi 
surface


• This allows us to rephrase 
the zero sound equation a 
self consistent integral 
expression

What is fμ?

10.1103/PhysRevB.103.075422



Absence of zero sound
What is f?

fμ(θ) ≈ −
1
2

V [2kF sin
θ
2 ] [cos2 ( θ

2 ) +
Δ2

(Δ + EF)2
sin2 ( θ

2 )]

• We recall that we estimated the interaction 
functions by taking matrix elements of the 
Coulomb potential


• The leading contribution to the interaction 
functions comes from the Coulomb 
potential

g⊥⊥ ∼ V( K − K′ )

gzz ∼ V( b )

g̃00 ∼
gzzΔ

vF K − K′ 

V(q)
Long Range

Short Range

Strongest

Weakest

10.1103/PhysRevB.103.075422



Absence of zero sound
Generic Landau damping

∮
dϕ
2π

(s − cos ϕ′ )[νμ(ϕ)]2 =
GsGvpF

vF ∮ ∮
dϕdϕ′ 

2π
νμ(ϕ)fμ(ϕ − ϕ′ )νμ(ϕ′ )

< 0 ⟹ s < 1 < 0

Landau damped, ω < vFq

Due to the properties of the Coulomb 
interaction  is negative definitefμ

10.1103/PhysRevB.103.075422



occurs when

What about first sound?
collisional kinetics

1
τ1

≪ ω ≪
1
τ2

∂δρμ(k, r)
∂t

+ v ⋅
∂
∂r

δρ̄μ(k, r) +
∂n
∂ϵ

ϵ̄

v ⋅ ℱμ =
1

GsGv
tr X̂μ ̂I[δ ̂ρ]

δρμ(k, r) = −
∂n
∂ϵ ∑

m

eimϕkFνμ
m(r) ∂n

∂ϵ ∑
m

νμ
m

τμ
m

?
• Existence of first sound rests on the behavior of 

the collision integral


• Specifically the relation between scattering time for 
different angular harmonics on the Fermi surface

10.1103/PhysRevB.103.075422



occurs when

What about first sound
is there a hydrodynamic regime in neutral channels

1
τ1

≪ ω ≪
1
τ2

?
• Existence of first sound rests on the behavior of 

the collision integral


• Specifically the relation between scattering time for 
different angular harmonics on the Fermi surface

m = 0

m = |1 |

m = |2 |

∑
p

δρμ
p

∑
p

cos ϕpF
δρμ

p

∑
p

cos2 ϕpF
δρμ

p

Density

Current

⋮

Conserved

Not

10.1103/PhysRevB.103.075422



What about first sound
is there a hydrodynamic regime in neutral channels

1
τ1

≪ ω ≪
1
τ2

∝ T2

?

Behaves similar to 
the charge channel

We have to evaluate 
the collision integral to 
know

10.1103/PhysRevB.103.075422



Collision integral in 2D
Allowed scattering processes

• At low temperatures 
collision are restricted to the 
Fermi surface


• There are two types of 
allowed scattering 
processes

p
i p

p'
q

q

p
i'

p
j

p
j'

p
i pp'

q

p
i' pjp

j'

Laikhtman, PRB 45, 1259 (1992)

Head on Collinear

Ledwith, Guo, Levitov, Ann. of Phys. 411, 167913 (2019)

10.1103/PhysRevB.103.075422



Neutral channels
How do these modes relax?

p
i p

p'
q

q

p
i'

p
j

p
j'

- + ∆j

++ ∆j=0
Momentum is current

But not here

10.1103/PhysRevB.103.075422



tr(X̂μ ̂I) → Iμ
−(pi) = −

1
T ∑

pjpi′ pj′ 

(2π)2δ (
′ 

∑
J

pJ) 2πδ (
′ 

∑
J

ϵJ) ninj(1 − ni′ 
)(1 − nj′ 

)Wμ
− (ν̄μ

i − ν̄μ
j − ν̄μ

i′ 
+ ν̄μ

j′ )

Collision integral
again by symmetry distinct channels

I(pi, α) = −
1
T ∑

βγδ
∑

pjpi′ pj′ 

(2π)2δ(
′ 

∑
J

pJ)2πδ(
′ 

∑
J

ϵJ)ninj(1 − ni′ 
)(1 − nj′ 

)Wαβ;γδ
ij;i′ j′ [ν̄iα + ν̄jβ − ν̄i′ γ − ν̄j′ δ]

- + ∆j

++ ∆j=0
Transforming from spin-

valley indices to 
symmetry distinct 

channels

Focusing on 
these types 
of scattering

10.1103/PhysRevB.103.075422



Neutral channels
Dominant contributions

1
τμ

1
= ∝ T2 ∫

π−θc

0

dθsc
sin θsc

(1 − cos θsc)(Wμ
−,collinear(θsc) + Wμ

−,head-on(θsc)) .
• Phase space for 

scattering in 2D is 
divergent for 
forward and back 
scattering


• These are the 
leading contributors 
to transport 
scattering


• The two have 
different origins

θ θ

θ θ

Head on Collinear

Backscattering

Forward

10.1103/PhysRevB.103.075422



Neutral channels
Backscattering

lim
θ→π

dθsc
sin θsc

(1 − cos θsc) → ∞

θ θ

Head on Collinear

Backscattering is cut off by 
kinematic constraints on 
scattering θ ≤ π − θc

• Phase space for 
scattering in 2D is 
divergent for 
forward and back 
scattering


• Backscattering 
contribution is due 
to short ranged 
interactions

(2π)2δ (
′ 

∑
J

pJ) 2πδ (
′ 

∑
J

ϵJ)
ln T

10.1103/PhysRevB.103.075422



Neutral channels
Backscattering

lim
θ→0

dθsc
sin θsc

(1 − cos θsc) |VCoulomb(θsc) |2 → ∞• Phase space for 
scattering in 2D is 
divergent for 
forward and back 
scattering


• Backscattering 
contribution is due 
to short ranged 
interactions


• Forward scattering 
due to long ranged 
part of Coulomb

θ θ

Head on Collinear

Forward scattering is cut off 
by the Thomas-Fermi 
scattering wave vector ln qTF

10.1103/PhysRevB.103.075422



Neutral channels
Dominant contributions

p
i p

p'
q

q

p
i'

p
j

p
j'

p
i pp'

q

p
i' pjp

j'

• Phase space for 
scattering in 2D is 
divergent for 
forward and back 
scattering


• Leading log 
dependence comes 
from these regions

1
τμ

tr
≡

1
τμ

1
≈

1
τμ
1,Backscatter

+
1

τμ
1,Forward

1
τBackscatter

∝ T2 ln
μ2 − Δ2

T

1
τForward

∝ T2 ln
μ2 − Δ2

vqTF

Short range

Long ranged (screened) Coulomb

10.1103/PhysRevB.103.075422



1
τμ

tr(T)
∝

T2

E2
F

{g2 ln(EF /T) + α2 ln(EF /vqTF)}

1
τμ

tr(T)
∝ α2 T2

E2
F

(ln(T/EF) + ln(EF /vqTF))

Transport rates
Two regimes

• Generically the rates scale 
 with prefactors 

dependent on the regime


• In the relativistic case 
backscattering is suppressed 
due to Berry curvature effects


• Only short ranged interactions 
contribute to the backscattering 
amplitudes

T2 log(⋯)

Δ ≪ EF

Δ ∼ EF

Relativistic

Non-relativistic

10.1103/PhysRevB.103.075422



No neutral first sound
Not hydrodynamics, but diffusion

1
τμ

1
∝ T2 [ln(EF /T) + ln(EF /vqTF)]

1
τμ

2
∝ T2

Dμ ≈
v2

F

2
τμ
tr(1 + Fμ

0 )

• There is no frequency regime in which 
neutral first sound is not overdamped


• Finite temperature transport in neutral 
channels is ultimately diffusive

≳ωτ1 ≪ 1

1
τ1

≪ ω ≪
1
τ2

First sound regime is 
“squeezed out”

10.1103/PhysRevB.103.075422



Summary
for Part I

• Symmetry dictated Fermi liquid 
theory of graphene


• Neutral zero sound and first 
sound in graphene are absent for 
all spin-valley channels.


• Transport of spin-valley quantum 
numbers is generically diffusive

- + ∆j

++ ∆j=0

ZMR, Fal’ko, Glazman, PRB, 2020

10.1103/PhysRevB.103.075422



Part II - Magnetic fields and 
extrinsic SOC 



Absence of spin zero sound and Silin modes

• Arguments of the previous section 
generally lead to spin zero modes 
being overdamped


• This is commonly true in  
spin invariant Fermi liquids


• In finite magnetic field there are 
undamped collective excitations in 
the spin channel


• A similar picture holds in the 
presence of spin orbit coupling

SU(2)



Spin oscillations in magnetic field
Silin-Legget mode

Hext

HMF

s > 1

s < 1
Landau damped

ω = μsHext

Kohn, PR 123, 1242 (1961)



Spin oscillations with SOC

λ

HMF

s > 1

s < 1
Landau damped

ω ∝ γλHMF

K

K′ 

Interactions

λ

Stein, v. Klitzing, Weimann, PRL 51, 130 (1983)
Dickmann, Kukushkin, PRB 71, 241310 (2005)



Extrinsic SOC in graphene

• Sub lattice symmetry breaking 
induced gap 


• Valley Zeeman 


• Valley Rashba 

Δ

λ

λR

Hp = vDp ⋅ Σ + ΔΣzτz + λτzσz + λR ̂z ⋅ (σ × Σ) .

e.g. Wang et al., PRX 6, 041020 (2016)



Extrinsic SOC in graphene
In the upper band

Hp = vDp ⋅ Σ + ΔΣzτz + λτzσz + λR ̂z ⋅ (σ × Σ) .

H+
p = ϵp + a(p) ̂z ⋅ (σ × p) + λ ̂σz ̂τz

Upper band projection

a(p) = vDλR/ϵpEffective Rashba Coupling

e.g. Wang et al., PRX 6, 041020 (2016)



SOC Fermi liquid graphene
with magnetic field

• Previous Fermi Liquid theory 
plus


• Zeeman coupling to in plane 
magnetic field


• Extrinsic SOC


• Coupling to external AC 
electric field

U(p, p′ , q) = Ud
p,p′ ,q + Us

p,p′ ,qσ ⋅ σ + Uv∥
p,p′ ,qτ∥ ⋅ τ∥

+Uvz
p,p′ ,qτ3τ3 + Um∥

p,p′ ,qτ∥ ⋅ τ∥σ ⋅ σ + Umz
p,p′ ,qτ3τ3σ ⋅ σ

e
c

A ⋅
∂Ĥp

∂p



H+
E =

j ⋅ E
iω

H+
B =

1
2

μsB ⋅ σ

EDSR of spin-valley modes

• In the presence of SOC, 
electric field couples to spin


• Here the response to the AC 
electric field of the probe is 
much stronger than to the AC 
magnetic field

λR

ω
c
vD

me

m*
≫ 1

Rashba, Soviet Physics Uspekhi 7, 823 (1965)
Rashba, Efros, Phys Rev Lett 91, 126405 (2003)
Maiti, Zyuzin, Maslov, PRB 91, 035106 (2015)

≫



̂ϵeq = ϵ̃ − ( 1
2

μ̃sH0 − ã(p)(p × ̂z)) ⋅ σ + λ̃σzτz

Equilibrium distribution

• In the presence of Zeeman 
and SOC, equilibrium 
density matrix has finite 
spin and valley-spin 
components


• At lowest order these 
components are 
proportional to the energy 
change from the added 
terms μ̃s = μs

1
1 + Fs

0
, ã(p) =

a(p)
1 + Fs

1
, λ̃ =

λ
1 + Fmz

0

̂ρ0 = nF + seq ⋅ σ + Mz
eq ⋅ στz

Interactions with the equilbrium 
polarizations renormalize the effective 
couplings



Collisionless transport equation
T = 0

∂δ ̂ρ
∂t

− i[δ ̂ϵ, ̂ρ0] − i[ ̂ϵ0, δ ̂ρ] = −
∂n
∂ϵ

eE ⋅ ∇p ̂ϵ0 . n(r, p) =
1

GsGv
tr ̂σ0 ̂τ0 ̂ρ(r, p)Plasmon

s(r, p) =
1

GsGv
tr ̂σ ̂ρ(r, p)

Y(r, p) =
1

GsGv
tr ̂τ ̂ρ(r, p)

Mj
i (r, p) =

1
GsGv

tr ̂τi ̂σj ̂ρ(r, p)

Silin mode sector

Optically inactive

j = z

j =∥

Linearized kinetic equation

Modes separate into 
two sectors



Momentum summed equations

• Here we focus on the the 
isotropic densities


 





• Rashba induces coupling to 
other harmonics

s0 = ∑
p

sp

Mz
0 = ∑

p

Mz
p

s0 s±1

Mz
0 Mz

±1

λ λ

λR

λR



Decoupled limit
λR ≪ |ωm=|1| − ωm=0 |

• For simplicity we consider the 
limit where angular harmonics 
approximately decouple


• In this limit  and  form a 
closed system of equations

s0 Mz
0

But see Kumar, Maslov, PRB 95, 165140 (2017).

s0 s±1

Mz
0 Mz

±1

λ λ

λR

λR

ωm=0 ωm=|1|



Decoupled limit
λR ≪ |ω1 − ω0 |

• For simplicity we consider the 
limit where angular harmonics 
approximately decouple


• In this limit  and  form a 
closed system of equations


• Spin and valley spin are mixed 
by the valley Zeeman coupling

s0 Mz
0

∂s0

∂t
− ωs ̂x × s0 + 2λ ̂z × Mz

0 = Fs

∂Mz
0

∂t
− ωm ̂x × Mz

0 + 2γλ ̂z × s0 = Fm

But see Kumar, Maslov, PRB 95, 165140 (2017).

ωs = μsH0, ωm = γωs, γ ≡
1 + Fmz

0

1 + Fs
0

Renormalized by Interactions

 axis defined by x H0



Re-expressing the spin/valley-spin sector

• A straightforward change of basis 
gives two decoupled vector 
equations


• There are two sectors


• A low frequency (heavily over 
damped) sector 


• A finite frequency undamped 
sector containing the 
conventional Silin mode 

li ∥ bi

li ⊥ bi

·li − bi × li = fi,

Driven precession



Valley-spin Silin modes
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ω1 = |b1 | = ω2
s + 4λ2γ−1• There are two eigenmodes 

adiabatically connected to


• the spin mode 


• and valley-staggered spin mode 


• For , the former must go to the 
Larmor frequency


• The latter mode may be renormalized 
away from the non-interacting 
frequency in general

s

Mz

λ = 0

ω2 = |b2 | = ω2
m + 4λ2γ−1



Valley-spin Silin modes
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ω1 = |b1 | = ω2
s + 4λ2γ−1• There are two eigenmodes 

adiabatically connected to


• the spin mode 


• and valley-staggered spin mode 



• The modes do not cross, but 
become degenerate in  
limit

s

Mz

λ/ωs → ∞

ω2 = |b2 | = ω2
m + 4λ2γ−1



Driving via AC electric field
polarization selective driving

• Silin subspace is 
diagonalized by circular 
polarizations 




• Each mode is excited by 
one linear polarization of 
electric field (with respect to 

)

̂ei,± = ̂y ± i
bi

ωi
× ̂y

H0

f1,± ∝ Ex

 axis defined by x H0

·li − bi × li = fi, li,± =
ifi±

ω + i0 ∓ ωi

f2,± ∝ Ey

l1 ∝ Ex

l2 ∝ Ey

Spin

Valley staggered spin

Connected to



Optical absorption from energy change

• Since the modes couple to  
field, they contribute to the 
optical conductivity


• The resonant contribution can 
be extracted from change in the 
Free energy due to pumping of 
the spin-valley modes


• As  are eigenmodes they 
contribute two decoupled 
sectors to the free energy

E

li

∂f
∂t

= ∫
dω
2π

E(−ω) ̂σR(ω)E(ω)

f = ∑
k

tr[ ̂ρ ̂ϵ]

f = f1[l1, Ex] + f2[l2, Ey]

Time averaged free energy change

Fermi liquid theory

Electric energy absorption



Contributions to conductivity

• Spin-valley modes contribute resonant peaks the real part of the conductivity

ℜσxx
l (ω) ∝ (Fs

0 − (Fs
0 − γ−1Fmz

0 )
λ2

γω2
1 ) πω1δ(ω2 − ω2

1)

ℜσyy
l (ω) ∝

4λ2

ω2
2 (Fmz

0 − (Fmz
0 − γFs

0)
λ2

γω2
2 ) πω2δ(ω2 − ω2

2)



Contributions to conductivity
Damping effects

• Realistically expect D’yakonov-
Perel and Elliot-Yafet spin flips


• This broadens the delta function 
into a Lorentzian


• Unfortunately for typical samples 
the resonant peaks lie in the 
shoulder of the Drude peak

ω

σR
ω

σR



Contributions to conductivity
Damping effects

• Unfortunately for typical samples 
the resonant peaks lie in the 
shoulder of the Drude peak


• For larger Rashba couplings 
stronger signals can be obtained


• Modes will change their angular 
momentum character in this case


• In samples where  peaks 
should be more visible

τs ≫ τtr

ω

σR
ω

σR



Summary
for Part II

• External Zeeman and/or extrinsic 
SOC promote overdamped spin-
valley excitations of graphene to 
well-defined oscillatory modes


• Spin and valley-staggered spin 
modes can be excited selectively 
via AC electric field


• Both contribute absorption peaks 
to the optical conductivity
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Final Summary

Thank you for your attention!

• External Zeeman and/or extrinsic 
SOC promote diffusive spin-valley 
excitations of graphene to well-
defined oscillatory modes


• Spin and valley-staggered spin 
modes can be excited selectively 
via AC electric field


• Both contribute absorption peaks 
to the optical conductivity

• Symmetry dictated Fermi liquid 
theory of graphene


• Neutral zero sound and first 
sound in graphene are 
overdamped for all spin-valley 
channels.


• Transport of spin-valley quantum 
numbers is generically diffusive
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